Cerebrovascular Accident Types: Three Types of Stroke

Date:

This medical illustration depicts three primary types of stroke: atherosclerotic, hemorrhagic, and ischemic cerebrovascular accidents (CVAs). Each diagram demonstrates distinct pathophysiological mechanisms leading to brain tissue damage through different vascular complications.

Cerebrovascular Accident Types: Three Types of Stroke

Pathophysiological Mechanisms and Clinical Features

Blood Blocks Artery Atherosclerotic plaque formation containing oxidized LDL, foam cells, and inflammatory mediators. Leads to progressive vessel stenosis with critical threshold at 70% luminal narrowing.

Cholesterol Plaque Build Up Accumulation of lipids and inflammatory cells in vessel intima. Process mediated by endothelial dysfunction, oxidative stress, and pro-inflammatory cytokines (IL-1β, TNF-α).

Hemorrhage Acute vessel rupture causing extravasation of blood into brain parenchyma. Common locations include basal ganglia (50%), thalamus (15%), and cerebellum (10%).

Rupture of The Vessel Structural failure of vessel wall often due to chronic hypertension or vascular malformations. Typical systolic pressures >180mmHg during acute events.

Anoxia Cellular oxygen deprivation leading to ATP depletion and ion pump failure. Critical threshold occurs at cerebral blood flow <10mL/100g/min.

Thrombus Organized blood clot containing platelets, fibrin, and trapped erythrocytes. Formation triggered by endothelial injury or hypercoagulable states.

Clinical Management of Stroke Types

Time-critical assessment determines eligibility for thrombolysis (tPA window 4.5 hours). CT perfusion imaging guides intervention decisions.

Hemorrhagic transformation risk increases with delayed treatment. Blood pressure management crucial (target SBP <140mmHg).

Territory-specific deficits help localize lesions. NIH Stroke Scale provides standardized assessment (maximum score 42).

FAST assessment protocol enables rapid recognition. Public education focuses on time-sensitive interventions.

  • Understanding Stroke Types: A Clinical Guide
  • Cerebrovascular Accidents: Pathophysiology and Management
  • Comprehensive Analysis of Stroke Mechanisms
  • Clinical Approach to Different Stroke Types
  • Stroke Classification: Medical Professional’s Guide

Rapid recognition and appropriate triage of stroke subtypes remains crucial for optimal outcomes. Modern imaging techniques enable precise differentiation and guide therapeutic decisions.

Evidence-based protocols continue evolving, emphasizing the importance of time-critical interventions. Understanding pathophysiological mechanisms enables targeted treatment approaches and improved patient outcomes.

Image source:

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Share post:

Popular

spot_imgspot_img

Subscribe

More like this
Related

Understanding Peripheral Arterial Disease: Anatomy of Atherosclerosis in the Lower Limbs

This anatomical comparison diagram illustrates the physiological differences between a healthy vascular system and one compromised by Peripheral Arterial Disease (PAD). The image highlights the progressive narrowing of the arteries in the leg due to the accumulation of plaque, a process known as atherosclerosis, which significantly restricts blood flow and oxygen delivery to the lower extremities.

Understanding Coronary Artery Disease: The Impact of Fatty Deposits on Heart Health

This article provides a detailed explanation of Coronary Artery Disease (CAD), focusing on the critical role of fatty deposits within the arteries, as vividly illustrated in the provided diagram. We will explore the anatomy of the coronary arteries, how these deposits lead to arterial narrowing, and the subsequent implications for myocardial blood supply and overall cardiac function. This comprehensive overview is designed to educate both medical professionals and the general public on this prevalent cardiovascular condition.

Recognizing a Heart Attack: Symptoms and Urgent Action

Understand the critical symptoms of a heart attack, a medical emergency caused by a blocked coronary artery. This article explains the sensation of tightness or pain in the chest, a hallmark sign of myocardial infarction, and the underlying physiological event. Learn to identify these vital indicators to ensure prompt medical attention and improve outcomes during a cardiac event.

Human body blood circulation diagram

The human circulatory system is an intricate network that extends throughout the entire body, carrying vital oxygen and nutrients to every cell. This comprehensive illustration combines a full-body view of the circulatory system with detailed heart anatomy, showing both external and internal perspectives of blood flow. The diagram uses blue to indicate deoxygenated blood vessels and red for oxygenated blood vessels, clearly demonstrating how blood circulates through the body and heart.