Blood circulation in the heart atrium and ventricle diagram

Date:

The human heart is a complex muscular organ with multiple chambers, valves, and blood vessels that work together to maintain circulation throughout the body. This detailed anatomical diagram showcases the anterior view of the heart, highlighting key structures involved in blood flow and cardiac function.

Blood circulation in the heart atrium and ventricle diagram

Blood circulation in the heart atrium and ventricle

Left Common Carotid Artery: Major blood vessel supplying oxygenated blood to the head and neck. It branches from the aortic arch and plays a crucial role in brain perfusion.

Brachiocephalic Trunk: The first and largest branch of the aortic arch. This vessel divides into the right common carotid artery and right subclavian artery.

Left Subclavian Artery: Supplies oxygenated blood to the left upper extremity. It emerges from the aortic arch and extends into the arm.

Left/Right Brachiocephalic Vein: These large veins return deoxygenated blood from the upper body to the superior vena cava. They form from the merger of internal jugular and subclavian veins.

Pulmonary Trunk: The main vessel carrying deoxygenated blood from the right ventricle to the lungs. It divides into right and left pulmonary arteries.

Right/Left Pulmonary Arteries: Carry deoxygenated blood from the pulmonary trunk to their respective lungs. These vessels are unique as they’re the only arteries carrying oxygen-poor blood.

Right/Left Pulmonary Veins: Return oxygenated blood from the lungs to the left atrium. They are essential for completing the pulmonary circulation.

Right/Left Atrium: The upper chambers of the heart that receive blood returning from the body and lungs. The right atrium receives deoxygenated blood while the left receives oxygenated blood.

Tricuspid Valve: Located between the right atrium and right ventricle. It prevents blood backflow during ventricular contraction.

Double-leaf Mitral Valve: Controls blood flow between the left atrium and left ventricle. It consists of two cusps and prevents backflow during ventricular contraction.

Aortic Valve: Guards the entrance to the aorta from the left ventricle. It prevents blood from flowing back into the left ventricle during diastole.

Valve of Pulmonary Trunk: Prevents backflow of blood from the pulmonary artery into the right ventricle. It opens during right ventricular contraction.

Papillary Muscles: Small muscles in the ventricles that anchor the heart valves. They prevent valve leaflets from everting during contraction.

Right/Left Ventricle: The lower pumping chambers of the heart. The right ventricle pumps to the lungs while the left ventricle pumps to the body.

Interventricular Septum: The muscular wall separating the right and left ventricles. It prevents mixing of oxygenated and deoxygenated blood.

Top of the Heart: The superior portion where major vessels enter and leave the heart. This area contains the great vessels and cardiac base.

Blood circulation through the heart’s chambers follows a precise sequence. Deoxygenated blood enters the right atrium through the superior and inferior venae cavae, then passes through the tricuspid valve into the right ventricle. Simultaneously, oxygenated blood from the pulmonary veins enters the left atrium and flows through the mitral valve into the left ventricle.

The ventricles contract together, ejecting blood into the pulmonary artery (right ventricle) and aorta (left ventricle). This coordinated action ensures efficient blood flow and prevents mixing of oxygenated and deoxygenated blood.

The heart’s electrical system coordinates these movements through specialized conducting tissues, ensuring proper timing of atrial and ventricular contractions. This synchronized action maintains continuous circulation and optimal tissue perfusion throughout the body.

Image source:

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Share post:

Popular

spot_imgspot_img

Subscribe

More like this
Related

Systole vs. Diastole: Understanding the Heart’s Pumping and Filling Phases

Explore the fundamental processes of systole and diastole, the two critical phases that define the heart's rhythmic action. This article delves into how the heart efficiently pumps blood to the body during systole and replenishes its chambers during diastole, highlighting the importance of each phase for cardiovascular health. Understand the coordinated muscle contractions and relaxations that ensure continuous blood circulation, a vital function for sustaining life.

Anatomy and Physiology of the Proximal Aorta and Its Primary Arterial Branches

The proximal aorta serves as the primary conduit for oxygenated blood leaving the heart, acting as the structural foundation for systemic circulation. This schematic diagram illustrates the critical transition from the cardiac outlet through the aortic arch, highlighting the major branches that supply the brain, upper limbs, and the heart muscle itself.

Heart and lung blood oxygen exchange diagram (labeled)

The human heart functions as a sophisticated dual pump system, orchestrating the continuous flow of blood throughout the body. This detailed illustration demonstrates how blood circulates through the heart, lungs, and body in two distinct but interconnected circuits: the pulmonary circulation (between heart and lungs) and systemic circulation (between heart and rest of the body). The diagram uses color coding - red for oxygen-rich blood and blue for oxygen-poor blood - to clearly show the path of blood flow.

Negative Feedback Loop: Understanding Adrenal Glucocorticoid Regulation

The body maintains balance through intricate feedback mechanisms, with the negative feedback loop playing a central role in regulating hormone levels and preventing overproduction. This diagram illustrates how the release of adrenal glucocorticoids is stimulated by hormones from the hypothalamus and pituitary gland, and how elevated glucocorticoid levels trigger negative signals to inhibit further hormone release from these glands. Exploring this image provides a clear insight into the dynamic process that ensures hormonal homeostasis.