The human heart anatomy sectional view with labels

Date:

The human heart’s internal anatomy reveals intricate structures working harmoniously to maintain circulation. This detailed cross-sectional diagram showcases the chambers, valves, and muscular components essential for understanding cardiac function.

The human heart anatomy sectional view with labels

 

The human heart anatomy sectional view

Aorta – The largest artery in the body, carrying oxygenated blood from the left ventricle. It distributes blood to all systemic tissues through its numerous branches.

Left Pulmonary Artery – Transports deoxygenated blood from the right ventricle to the left lung. This vessel branches extensively within lung tissue to facilitate gas exchange.

Left Atrium – Receives oxygenated blood from the pulmonary veins. The chamber features a distinctive muscular wall and plays a crucial role in maintaining proper blood flow.

Left Pulmonary Veins – Return oxygenated blood from the lungs to the left atrium. These vessels are essential for completing the pulmonary circulation circuit.

Mitral (Bicuspid) Valve – Controls blood flow between the left atrium and left ventricle. Its two cusps prevent backflow during ventricular contraction.

Aortic Semilunar Valve – Prevents backflow of blood from the aorta into the left ventricle. Its three cusps ensure unidirectional blood flow during the cardiac cycle.

Pulmonary Semilunar Valve – Located between the right ventricle and pulmonary artery. It prevents backflow of blood into the right ventricle during diastole.

Left Ventricle – The most muscular cardiac chamber, pumping blood to the systemic circulation. Its thick walls generate the pressure needed for systemic perfusion.

Papillary Muscles – Cone-shaped muscular projections attached to valve cusps via chordae tendineae. They prevent valve leaflets from everting during contraction.

Interventricular Septum – The muscular wall separating right and left ventricles. It prevents mixing of oxygenated and deoxygenated blood.

Epicardium – The outer layer of the heart wall, providing protection and reducing friction. It contains coronary vessels and nerves.

Myocardium – The middle, muscular layer of the heart wall. This contractile tissue is responsible for the heart’s pumping action.

Endocardium – The innermost layer lining the heart chambers and valves. It provides a smooth surface for blood flow.

Superior Vena Cava – Returns deoxygenated blood from the upper body to the right atrium. It is formed by the union of the brachiocephalic veins.

Right Pulmonary Artery – Carries deoxygenated blood to the right lung. It is shorter and more horizontal than its left counterpart.

Pulmonary Trunk – The main pulmonary artery arising from the right ventricle. It divides into right and left pulmonary arteries.

Right Atrium – Receives deoxygenated blood from the systemic circulation. It contains distinctive pectinate muscles and the fossa ovalis.

Right Pulmonary Veins – Transport oxygenated blood from the right lung to the left atrium. They pass anterior to the right bronchus.

Fossa Ovalis – A depression in the interatrial septum marking the location of the fetal foramen ovale. It represents an important developmental landmark.

Pectinate Muscles – Parallel muscular ridges in the right atrial wall. They increase the chamber’s contractile efficiency.

Tricuspid Valve – Controls blood flow between the right atrium and ventricle. Its three cusps ensure unidirectional flow.

Right Ventricle – Pumps blood to the pulmonary circulation. Its walls are thinner than the left ventricle due to lower pressure requirements.

Chordae Tendineae – Fibrous cords connecting papillary muscles to atrioventricular valves. They prevent valve prolapse during ventricular contraction.

Trabeculae Carneae – Irregular muscular ridges on the ventricular walls. They increase surface area for blood oxygenation and strengthen contraction.

Inferior Vena Cava – Returns deoxygenated blood from the lower body to the right atrium. It passes through the diaphragm at the caval opening.

Understanding cardiac internal anatomy is fundamental for healthcare professionals diagnosing and treating heart conditions. These structures work in precise coordination to maintain efficient circulation.

The complex arrangement of cardiac chambers, valves, and muscular components demonstrates the heart’s remarkable design in maintaining separate pulmonary and systemic circulations while ensuring optimal blood flow throughout the body.

Image source:

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Share post:

Popular

spot_imgspot_img

Subscribe

More like this
Related

Brain and heart blood circulation

The human circulatory system consists of two main circuits - pulmonary and systemic - that work together to distribute blood throughout the body. This detailed diagram illustrates how blood flows through the heart chambers and major vessels, using blue to indicate deoxygenated blood and red for oxygenated blood.

Thermoregulation: How the Body Maintains Temperature During Physical Activity

The image titled "Thermoregulation Diagram" illustrates the body’s mechanisms for maintaining temperature during physical activities like skiing and running, focusing on the process of thermoregulation. It shows how the body conserves heat in cold environments and dissipates heat during exertion through changes in blood flow and sweat production. This diagram highlights the skin’s role in temperature regulation, a critical function for maintaining homeostasis. This article explores the physiological processes of thermoregulation, the anatomical structures involved, and their significance in adapting to environmental and activity-induced temperature changes.

Talocalcaneal and Talocalcaneonavicular Articulations: A Comprehensive Anatomical Guide

The talocalcaneal and talocalcaneonavicular joints form crucial components of the hindfoot complex, enabling essential movements during gait and weight-bearing activities. These articulations, along with their associated ligamentous structures, provide stability while allowing controlled motion necessary for proper foot biomechanics.

Negative Feedback Loop: Understanding Adrenal Glucocorticoid Regulation

The body maintains balance through intricate feedback mechanisms, with the negative feedback loop playing a central role in regulating hormone levels and preventing overproduction. This diagram illustrates how the release of adrenal glucocorticoids is stimulated by hormones from the hypothalamus and pituitary gland, and how elevated glucocorticoid levels trigger negative signals to inhibit further hormone release from these glands. Exploring this image provides a clear insight into the dynamic process that ensures hormonal homeostasis.