Tag: pulmonary embolism

CT Imaging of Iliac Vein Thrombosis: Diagnosing Deep Vein Clots in the Abdomen

This article explores the radiological appearance of deep vein thrombosis within the common iliac vein as seen on an abdominal computed tomography (CT) scan. We will examine the clinical significance of iliac vein thrombosis, the anatomy of the pelvic venous system, and the critical role of diagnostic imaging in preventing complications like pulmonary embolism.

Doppler Ultrasound Diagnosis of Deep Vein Thrombosis in the Femoral Vein

This article presents a detailed analysis of a Doppler ultrasound scan taken from the right leg of a 65-year-old male patient presenting with significant swelling. The image clearly highlights the physiological and anatomical differences between patent blood vessels and those obstructed by pathology. We will examine the specific radiological signs of Deep Vein Thrombosis (DVT) in the subsartorial vein, contrasting the absence of blood flow in the thrombosed vessel against the healthy flow observed in the adjacent femoral artery and deep femoral vein.

Saddle Pulmonary Embolism: CT Imaging Findings and Clinical Overview

This article provides a detailed analysis of a Computed Tomography (CT) scan displaying a saddle pulmonary embolism, a critical medical emergency characterized by a large blood clot lodging at the bifurcation of the main pulmonary artery. We will explore the radiological signs evident in the image, the pathophysiology of this life-threatening condition, and the standard clinical protocols used for diagnosis and management.

The Physiology of D-Dimer Production: From Fibrinogen to Fibrinolysis

Hemostasis is a complex physiological balancing act involving the formation of blood clots to stop bleeding and the subsequent breakdown of those clots to restore normal blood flow. The process of generating D-dimers begins with the soluble protein fibrinogen and ends with the enzymatic degradation of a stabilized fibrin clot. Understanding this pathway is clinically vital, as the detection of D-dimers in the bloodstream serves as a critical diagnostic marker for thrombotic disorders such as deep vein thrombosis (DVT) and pulmonary embolism (PE).

Phlegmasia Cerulea Dolens: Understanding Severe Deep Vein Thrombosis and Limb Ischemia

Phlegmasia cerulea dolens is a rare and critical medical emergency resulting from a massive obstruction of the venous drainage system in an extremity, typically...

Popular

Exploring the Endomembrane System: The Logistics Network of the Human Cell

The endomembrane system is an intricate group of membranes and organelles in eukaryotic cells that work together to modify, package, and transport lipids and proteins. This system ensures that cellular products reach their intended destinations, whether inside the cell or secreted into the extracellular environment, maintaining physiological homeostasis.

Diagnostic Identification of Ring-Shaped Plasmodium ovale in Malaria Blood Smears

The microscopic identification of Plasmodium ovale is a critical step in the diagnosis of malaria, particularly in identifying species that exhibit dormant liver stages. This guide explores the ring-shaped trophozoite morphology of P. ovale as seen on Giemsa-stained blood films, providing clinical insights into its lifecycle, anatomical presentation within erythrocytes, and the pathological impact on the human host.

Understanding Cellular Morphology: A Biological Overview of the Ovoid Paramecium

Eukaryotic life manifests in a staggering variety of forms, each adapted to survive and thrive in specific ecological niches. The Paramecium, a genus of unicellular ciliates, serves as a primary model for understanding how complex anatomical and physiological systems can exist within a single cell. By examining its distinct ovoid shape and the specialized organelles that drive its movement and metabolism, we gain deeper insight into the foundational principles of microbiology and cellular health.

Understanding Eukaryotic Cell Morphology: An In-Depth Look at the Bell-Shaped Vorticella

The diversity of eukaryotic cells is often exemplified by the unique morphologies found in the world of microscopic microorganisms. Vorticella, characterized by its distinctive bell-shaped body and a highly contractile stalk, represents a fascinating model for studying cellular motility and specialized feeding mechanisms. This guide explores the anatomical and physiological traits that allow these single-celled organisms to thrive in aquatic ecosystems by leveraging their complex structural adaptations.

Subscribe

anatomy-note-come-back Tag Template - Week PRO