Tag: plaque

Carotid Endarterectomy: Preventing Stroke by Clearing Arteries

This diagram clearly illustrates carotid endarterectomy, a surgical procedure designed to remove plaque buildup from the carotid arteries. These vital arteries in the neck supply blood to the brain, and blockages can significantly increase the risk of stroke. The images depict the stages of plaque removal and the subsequent repair of the artery, highlighting a crucial intervention in neurovascular health.

Understanding Coronary Artery Bypass Graft (CABG) Surgery

This diagram illustrates the intricate process of Coronary Artery Bypass Graft (CABG) surgery, a vital procedure designed to restore healthy blood flow to the heart muscle. When coronary arteries become blocked or severely narrowed due to plaque buildup, CABG provides an alternate route for blood, alleviating symptoms and improving cardiac function. It showcases the types of grafts used and their strategic placement to bypass diseased segments.

Understanding Heart Bypass Surgery: A Visual Guide

This diagram offers a clear visual explanation of coronary artery bypass grafting (CABG), commonly known as heart bypass surgery. This critical procedure is performed to improve blood flow to the heart muscle when arteries become severely narrowed or blocked, often due to coronary artery disease. It involves creating new pathways for blood to bypass these blockages, utilizing healthy blood vessels typically taken from other parts of the patient's body.

Diagnosing Carotid Artery Stenosis: Insights from Doppler Ultrasound

This article delves into the diagnostic power of Doppler ultrasound in identifying carotid artery stenosis, specifically focusing on the Right Internal Carotid Artery (RICA). Utilizing detailed images and spectral analysis, we explore how this non-invasive technique quantifies the degree of narrowing and blood flow alterations, crucial for assessing stroke risk. Gain a clearer understanding of how medical imaging informs the management of this critical vascular condition.

Understanding Atherosclerosis: The Impact of Plaque on Coronary Arteries

Atherosclerosis is a prevalent cardiovascular disease where plaque accumulates within artery walls, leading to narrowing and restricted blood flow. This article offers a detailed exploration of atherosclerosis, focusing on its development in the coronary arteries and its significant impact on heart health. Discover how plaque buildup can lead to a reduction in oxygen-rich blood supply, affecting the heart's vital function.

Popular

Anatomy and Clinical Overview of the Ascending Aorta and Thoracic Structures

The ascending aorta represents the vital beginning of the systemic arterial system, emerging from the heart's left ventricle to carry oxygenated blood to the entire body. This complex region of the mediastinum involves intricate relationships between the heart, major vessels, and the respiratory structures of the chest. Understanding the anterior view of these components is essential for diagnosing cardiovascular conditions and planning thoracic surgical interventions.

Anatomy and Physiology of the Proximal Aorta and Its Primary Arterial Branches

The proximal aorta serves as the primary conduit for oxygenated blood leaving the heart, acting as the structural foundation for systemic circulation. This schematic diagram illustrates the critical transition from the cardiac outlet through the aortic arch, highlighting the major branches that supply the brain, upper limbs, and the heart muscle itself.

Understanding the Jugular Venous Pressure (JVP) Waveform and Its Clinical Significance

The jugular venous pressure (JVP) waveform is a vital clinical tool used by healthcare professionals to assess the pressure in the right atrium and the overall performance of the right side of the heart. By observing the distinct waves and descents of the jugular venous pulse, clinicians can gain indirect yet significant insights into central venous pressure and hemodynamics without the need for immediate invasive monitoring.

Embryology and Anatomy of the Parietal Venous System: A Comprehensive Guide

The development of the human parietal venous system is a sophisticated biological process that involves the transformation of symmetrical embryonic vessels into a functional, asymmetrical adult network. During early gestation, the venous system is characterized by the cardinal veins, which provide the primary drainage for the embryo's trunk. As development progresses, selective regression and fusion of these channels occur, ultimately shifting the majority of blood flow to the right side of the body to form the Venae Cavae.

Subscribe

anatomy-note-come-back Tag Template - Week PRO